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Abstract. Transfer-matrix methods on finite-width satrips with free boundary conditions are 
applied to lanice site animals, which provide a model for randomly branched polymers in a 
good solvent. By assigning a distinct fugacity to sites along the snip edges, critical propetties 
at the special (adsorption) and ordinary Vansitions are assessed. The cros~over exponent at the 
adsorption paint is estimated as C$ = 0.50510.015, consistent with recent predictions that qi = & 
exactly for all space dimensionalities. 

1. Introduction 

The conformational properties of linear polymers near an attractive wall are well understood 
by now [l]. The fact that conformal invariance concepts [2] are applicable to the problem 
has been extremely helpful, especially in two dimensions (in which case the ‘wall’ is a line) 
where these tools provide a number of exact values for critical exponents. In contrast, for 
branched polymers it has been shown that the underlying field theory is not conformal [3]. 
Exact results on bulk properties of randomly branched polymers have, however, been 
obtained through a connection with the theory of Yang-Lee edge singularities [4]. The 
corresponding extension towards surface properties has been accomplished only recently [5] 
yielding, among others, the interesting prediction that the crossover exponent at the 
adsorption point has the hyperuniversal (dimension-independent) value q5 = f. This result 
applies for an impenetrable wall; penetrable surfaces have not been considered [5]. The 
case in favour of hyperuniversality is built from the following elements [5]: (i) ,an exact 
calculation in d = 3, by means of a correspondence between branched polymers and 
an epidemic process plus a supersymmetric mapping of the latter onto a semi-infinite 
one-dimensional Yang-Lee edge problem; (ii) conformal invariance properties of the 
two-dimensional Yang-Lee problem leading to information on four-dimensional branched 
polymers near a surface; (iii) mean-field theory, expected to be valid for d > 8; and (iv) 
perturbation theory in d = 8 - c dimensions, all four of which yield q5 = $. 

In the present work we use finite-size scaling [6] and phenomenological 
renormalization [7] ideas to study surface properties of site lattice animals (which provide 
a model for randomly branched polymers in a good solvent) in two dimensions. To this 
end, the correlation length for animals on infinite strips with free boundary conditions (FBC) 
is calculated numerically. by diagonalization of the corresponding transfer matrix [SI. By 

t E-mail address: sldq@if.uff.br 

03054470/95iZ26315+07$19.50 @ 1995 IOP Publishing Ltd 6315 



6316 

imposing FBC one is able to assess surface critical behaviour, in particular, the adsorption 
transition. Our main goal is to check on the proposed hyperuniversal value @ = f at 
the adsovtion point. Accordingly, only impenetrable surfaces are considered throughout 
this paper. We start by applying standard oneparameter phenomenological renormalization 
(PR) [7], reobtaining bulk quantities such as the critical fugacity x, and the temperature-like 
exponent y = l / v  which are known very accurately [8,9]. This is important as a check 
of the overall reliability of our procedures. We then search for a surface-driven transition, 
by introducing a distinct fugacity for occupied sites along the strip boundaries. A two- 
parameter PR analysis is canied out, by comparing correlation lengths on three strips of 
consecutive widths [IO-121. Two non-trivial fixed points are found, which are respectively 
related to the ordinary (bulk-dominated) and adsorption transitions. The corresponding 
finitesize estimates of critical parameters and exponents are extrapolated. Our main final 
result is @ = 0.505f0.015, providing support to the hyperuniversality conjecture [5] q5 = 1, 
at least in two dimensions. 

S L A de Queiroz 

2. Model and calculational procedure 

The generating function of the model, defined on a semilinfinite lattice, can be written as 

z = C N , N , X ~ X ?  (1) 
N,N, 

where CNJ, is the number of different configurations that can be built with a total of N 
sites constrained to form one cluster, of which NE are at the surface; x is the fugacity for site 
occupation and x, = expcs/keT where -es is the extra energy assigned to each site at the 
surface. It is expected on general grounds 1131 that the critical fugacity x, will be a constant 
as a function of xrr from small x, up to the adsorption threshold given by some x,’ > 1. 
Upon approach to a point (x,“, x,”) on the critical line in ( x ,  x s )  space, the bulk correlation 
length diverges as ( - 6-” where the scaling field 6 is a suitable linear combination of 
Sr x, - x,”. Close to the adsorption point, a second length 5; diverges 
with a different exponent U, 3 l /yr (and a different combination Ss of the variables Sx 
and Sx,). Physically, ts measures the thickness of the adsorbed polymer layer. Thus the 
average number of surface contacts ( N s )  scales asymptotically with the average number of 
sites (N) as 1131 

x - x,“ and 6x, 

(Nd - W m  @ = Y J Y .  (2) 
Below the adsorption threshold one has @ = 0, while in the adsorbed phase @ = 1. At the 
threshold @ is expected to take on a non-trivial value. 

The correlation length t r ( x , x , )  along a strip depends on the largest eigenvalue 
A i  ( x , x s )  of the transfer matrix via [8j :L(X,  xs )  = - l / l nAi  ( x .  x s ) .  For large L and 
close enough to criticality of the corresponding (semi-)infinite system, the correlation length 
must scale, in terms of S and 8, defined above, as 161 

,Lt-1FL(S, 8,) = F(LJ6,  L”6,).  (3) 
Upon rescaling of C L ,  one expects two non-trivial fixed points [I  1-13]: (i) the ordinary 
fixed point, which governs the critical behaviour of the unbound (bulk) phase, at which the 
surface interactions are irrelevant and thus exhibits ys < 0; and (ii) the special fixed point, 
corresponding to the adsorption transition, with ys 

We use strips of width L < 10 sites, both for square and triangular lattices. Building 
up the transfer matrix involves the analysis of connectivity properties of adjacent columns 
of occupied and empty sites. For the present case of animals on strips with mc, this is a 

0. 
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straightforward extension of earlier work on percolation and animals with periodic boundary 
conditions (PBC) [8,9] and percolation with F'BC 1141. The resulting matrix is rather sparse, 
owing to restrictions imposed by connectivity [SI: for L = 10 on the square lattice, for 
instance, only 4.2% of the possible combinations of adjacent column states are allowed. 

Extrapolation of finite-width results must be dealt ' with carefully, especially as 
convergence of estimates produced with FBC is usually slower than that of their counterparts 
generated with use of PBC [14-161. In the present work, extrapolations toward L --f 00 

have been~done using the Bulirsch-Stoer (BST) algorithm [17,18]. As discussed extensively 
elsewhere [IQ, whenever the leading correction-to-scaling exponent w is not known apriori 
BST extrapolations rely on keeping it as a free parameter within an interval guessed to be 
reasonable. Central estimates and error bars are evaluated self-consistently by selecting the 
range of o for which overall fluctuations are minimized. 

3. Results 

3.1. One-parameter renormalization 

We first consider no surface binding (x, = 1). We can then 'implement standard one- 
parameter PR in the usual way by looking for a finite-size estimate of x, given by the fixed 
point x: of the implicit recursion relation 

At the fixed point, an approximation to the bulk exponent y = I j v  is evaluated by [6] 

In order to check on universality of critical amplitudes [19], we also calculate the quantity 
A' f ~ L / x ~ ~ ( x ; ) .  Note that for a triangular lattice with FBC the strip width is L = Nd'?/Z, 
where N is the number of sites across the strip. If the underlying field theory were conformal 
at the critical point, this would be an estimate of the exponent describing the decay of critical 
correlations along the surface, rls. 

Our results are shown in table 1. Overall agreement with expected values, where 
these are available, is rather good. Universality of critical correlation-length amplitudes is 
satisfied within error bars. However, finite-size data show that the amplitude of corrections 
is much larger than for the corresponding cases of PBC (see, for example, table 1 of [9]). 
Partially as a consequence of this, our extrapolated estimates for x, and y &e somewhat 
less accurate than those obtained with PBC [9] .  A second source of imprecision emerges 
when one considers the broad ranges allowed for the correction-to-scaling exponent o in 
table 1. Though some degree of subjectivity is inevitable when dealing with error estimation 
within the BST scheme, our results for w reflect the fact that, roughly for w between 1 and 
2 the fluctuation estimates for fixed w (based on the spread between next-to-highest order 
estimates [18]) keep to the same order of magnitude. On the other hand, outside this 
interval fluctuations increase, and estimates deteriorate, quickly. This is to be compared, 
for example, to similar extrapolations for percolation with FBC [14] where usually one can 
pinpoint a much narrower band of values of w within which fluctuations are minimized. 

3.2. Two-parameter renormalization 

We next allow the surface interaction to v q .  Similarly, for example, to studies of linear 
polymer adsorption [ l l ,  121, an extra energy -E ,  is introduced for sites on either strip 
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Table 1. Results from one-parameter PR. Uncerrainties in last quoted digits are shown in 
parentheses. Exvapolations ~obiained by the BST algoriLhm with cnrrection-to-scaling exponent 
a, in rangss shown. Enpectcd valurc from [SI. 

3 0.298906 1.43406 1.02271 
4 0.274596 1.45806 1.27009 
5 0.263725 - 1.47490 1.44619 
6 0.257947 1.48691 1.57871 
7 0254533 ~ 1.49588 1.68219 
8 0.252361 1.50284 1.76528 
9 0.250909 ~ 1.50841 1.83350 

10 0.249890 ~ 1.51296 1.89053 
Expected 0.246 lSO(10) 1.5607(4) - 
Exuapolated 0.2460(2) 1.55(1) 2.45(4) 
w 134) 1.W) 1.45(20) 

0.247 186 1,395 19 0.998368 
0.221 892 1.42363 1.25590 
0.210650 1.44332 1.43950 
0.204743 1.45791 1.57633 
0.201287 1.46922 1.68213 
0.199107 1.47828 1.76637 
0.197652 1.48570 1.83506 
0.196638 1.49190 1.89217 
0.192925(10) 1.5607(4) - 
0.1928(2) 1.55(1) 2.4(1) 
1.5(4) 1.56) 1.56) 

boundary, so that x, = expcf/ksT. L-dependent fixed points (x* .x; )  are obtained by 
comparing correlation lengths on three strips [lo]: 

(6) 

In the present case these equations give two fixed points: the ordinary fixed point, which 
describes the behaviour of the unbound animal and the special fixed point which describes 
the animal's behaviour at the binding transition. Linearizing around the fixed points, the 
exponents y and y, can be found from suitable partial derivatives evaluated at the fixed 
point in question [10-12]. Again we'calculate the quantity AL 2L/7&(x',x;): Our 
results for the ordinary and special fixed points are displayed in tables 2 and 3, respectively. 

As a general rule, finite-size estimates differ from their limiting (L -+ CO) values 
by much smaller amounts than was the case in one-parameter PR. In several instances, 
though, convergence turns out not to be monotonic. Further, within the BST scheme we 
frequently find the following as the trial value of w is increased from 0.45 to, say, 6 (i) 
fluctuation estimates at fixed w always decrease, and (ii) last-order approximants g(o) vary 
monotonically, and seem to be converging towards fixed points (that is, dQ(w)/dw + 0). 
This is consistent with what is found from three-point extrapolations adjusting o for the best 
straight-line fit of data against L-O [9]: as arule, o tends to converge to unrealistically high 
values. Thus, although strictly speaking there are no regions where the BST algorithm is 
stable with respect to w [L8] in such cases, one can produce reasonably reliable estimates by 
looking at trends followed upon increasing o. For the entries in tables 2 and 3 to which this 
picture applies we display the ranges of variation of last-order approximants corresponding 
to o > ofin. with omin as given in the respective entry. 

eL(x*>.:) - tL-I(~*,xf) - - t-z(x*,x,") - L L - 1  L - 2  . 

3.2.1. The ordinary transition. For the ordinary transition, the corresponding fixed point 
can be found only for L > 6. The exact result ys = -1 is expected to hold, as it is 
based on general properties of the ordinary mansition of two-dimensional systems [ZO]. 
For both square and triangular lattices, extrapolations were performed discarding data for 
L = 6. Though, for the latter, these do not usually imply non-monotonic variation aiong 
the sequence, their inclusion would increase the scatter of extrapolates by at least one order 
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Table 2. Results from two-pmmeter PR at the ordinaq fixed point. Uncertainties in last quoted 
digits are shown in parentheses. Extrapolations obtained by the BST algorithm with correction- 
to-scaling exponent o in ranges shown. 

L X. x: Y YJ AL 

(a) Square 
6 0.246 282 0.223963 1.57916 -1.02151 2.49768 
7 0.246420 0.232356 1.57746 -1.05163 2.48955 
8 0.246 352 0.225924 1.57451 -1.04907 2.49477 
9 0.246 294 0.217824 1.51223 -1.04172 2.50040 

10 0.246 254 0.209961 1.57057 -1.03480 2.505 16 

Extrapolated 0.246 17(3) 0.18(1) 1.566(1) -1.014(6) 2.519(4) 
w > 3.0 > 3.0 > 3.0 =- 3.0, > 3.0 

Expected 0.246150(10)" - . 1.5607(4)" -Ib - 

(b) Triangular 
6 0.194 5 10 0.352877 1.53424 -0.836625 2.381 520 
7 0.193555 0.289 360 is4238 -0.804216 2.445904 
8 0.193238 0.257802 1.54615 -0.841 891 2.472772 
9 0.193 115 0.240468 1.54833 -0.880553 2.485607 

I O  0.193056 . 0.229288 1.54982 -0.910094 2.492939 

Extrapolated 0.19296(1) 0.185(15) 1.555(2) -l.OC!(l) 2.512(2) 
0 > 3.0 -c 2.4(9) 3.36) 2.4(6) 

Expected 0.192925(10)" - 1.5607(4)* -Ib - 

a Reference [9]. 
Reference [20]. 
No optimal w found (see text). 

of magnitude. For the non-universal x: on the mangular lattice, we have found neither an 
optimal range for w,  nor the smooth decrease of error as w increases, described above. Thus 
we quote for x: an average of last-order estimates for 1 .O < w < 4.0. In general, the final 
results for the ordinary fixed point show agreement to within less than 0.5% with those of 
[9]; for the exact result ys = - 1  [20] fluctuations are higher, but still kept smaller than 2%. 
Universality of the amplitude A is satisfied within 0.05%~. 

3.2.2. The specid transition. For the special fixed point on the square lattice we have 
discarded L = 5 and 6 data for x*, x: and AL on account of non-uniform convergence; 
otherwise, all data in table 3 have been used in extrapolations. For ys on the square lattice, 
fluctuations were approximately constant and small throughout the range of w explored, so 
we quote an average of last-order estimates for 1.0 < o < 4.0. While extrapolates from 
square-lattice results undoubtedly suffer as a result of the above-mentioned difficulties, 
application of the BST algorithm nevertheless gives a fairly accurate numerical picture. 

On the other hand, results for the triangular lattice fall into smooth, well behaved 
sequences from which we have extracted a set of very precise extrapolates. Our central 
estimate for y is higher by 0.4% than that of [9], with non-overlapping error bars. Recalling 
that our error bars reflect uncertainties in the extrapolation procedure itself, and do not take 
into account systematic errors in the original sequence of finite-size results, we do not take 
this fact as necessarily meaning that our estimates conflict. Indeed, other instances are 
known [ 11, 121 in which extrapolates from two-parweter PR differ slightly, for example, 
from exact results. 
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Table 3. Results from nvo-par?.meter PR at the special fixed point. Uncertainties in last quoted 
digils are shown in parentheses Extrapolations obtained by the EST dgorilhm with mrrecdon- 
to-scaling exponent w in ranges shown. 

L X I  x: Y Y5 AL 

(a) Square 
5 
6 
7 
8 
9 
10 
ExpeMed 
Extrapolated 

(b) Triangular 
0 

5 
6 
7 
8 
9 

10 
Expected 
Extrapolated 
w 

0.244202 
0.246045 ~ 

0.246033 
0.246088 
0.246 108 
0.246 123 
0.246 150(10)' 
0.246 15(1) 
D 3.0 

0.190915 
0.192 174 
0.192573 
0.192735 
0.192813 
0.192 856 
0.192925(10)' 
0.19292(1) 
3.5(6) 

2.34075 
2.28235 
2.28278 
2.28049 
2.27951 
2.278 77 

2.277(1) 
D 3.0 

- 

2.851 22 
2.788 IO 
2.76501 
2.75442 
2.74873 
2.745 27 

2.745(5) 
2.7(4) 

- 

1.542 94 
1.55829 
1.56222 
1.565 14 ' 

1.566 97 
1.56825 
1.5607(4)' 
1.571(2) 
> 3.9 

1.53472 
1.54574 
1.55200 
1.55608 
1.55889 
1.56086 
1.560 7(4)' 
1.5663ci) 
3.6(6) 

0.717 355 -0.Os80272 
0.796012 -0.057977 I 
0.796973 -0.0583358 
0.800373 ' -0.056 153 8 
0.801 618 -0.055 1068 
0.802352 -0.054231 7 

0.804(1) -0.054(2) 
- - 

> 3.0 b - 

0.701 013 -0.117316 
0.745358 -0.0887032 
0.764248 -0.076 1753 
0.773683 -0.0695443 
0.778886 -0.0655337 
0.781982 -0.062831 1 

0.788 8 6 )  --6.054(3) 
3.5m 2.0(4) 

- - 

a Reference [9]. 
No optimal w found (see the texr). 

4. Discussion and conclusions 

It can be seen from tables 2 and 3 that universality of critical amplitudes [19] is satisfied to 
within error bars. The qualitative behaviour as one spans the distinct possibilities is similar 
to that of the corresponding q of linear polymers. For PBC A Y 0.68 [8, 91; with FBC, at the 
ordinary transition A Y 2.51; at the special transition A Y -0.054. For linear polymers 
qbulr = &; qp" = g; qfP = -A 11 1,121. Unfortunately, the analogy does not seem to go 
beyond this level. 

The result x; = 2.27711) for the adsorption threshold on the square lattice compares 
well with, and is more precise than, the series estimate 2.25(5) [Zl]. It would be interesting 
to check whether using our value of x: in the series analysis would improve other results. 

Turning now to the crossover exponent @J = ys/y, the safest course seems to be 
separately extrapolating the sequences for y,$ and y ,  and then calculating the ratio of final 
estimates. From the square-lattice data of table 2 one would get q5 = 0.511 +. 0.002, while 
for the triangular lattice of table 3 one gets @J = 0.5035 f 0.0005. Though, as mentioned 
earlier, the above error bars do not take into account systematic errors, it is desirable to 
have an estimate of these. In order to do so, we refer to the similar case of adsorption 
of two-dimensional linear polymers, where conformal invariance asserts that y = $ and 
yA = 3 ,  thus q5 = f exactly; two-parameter PR sequences for a locally directed (but 
globally isotropic) square lartice extrapolate to y E 1.339 and ys Y 0.679, respectively [12], 
which gives @J Y 0.507, just under 2% off the exact value. For fully isotropic lattices, 
the extrapolation for )i overshoots the exact value by 4% [ll].  In this latter case the 
corresponding extrapolations of y have not been published; however, finite-lattice data point 

2 
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towards a value somewhat larger than $ [ 111, thus one expects at least a partial compensation 
of errors for the ratio y , / y .  Assuming systematic errors of order 2% in the extrapolated 
exponents also for the present case, one gets 4 = 0.51 z!z0.01 (Square lattice) and 0.50M.01 
(triangular). Systematic deviations are tlius estimated to increase uncertainties by at least 
one order of magnitude over those coming from extrapolation procedures. Our final result 
must encompass both the latter central estimates and allow for the spread between them, 
plus their own inherent uncertainties. Thus we have Q, = 0.505 f 0.015. This is consistent 
with the hyperuniversality conjectuie Q, = $ 151, and is to be compared with the series result 
Q, = 0.6 =k 0.1 [Zl]. 

We have studied surface properties of randomly branched polymers in two dimensions. 
Our estimates of bulk quantities such as critical fugacity xc and critical exponent y are in very 
good agreement with results obtained with PBc [S, 91. We have checked that universality 
of critical amplitudes [19] holds in all instances investigated. The adsorption threshold for 
the square lattice has been located with greater accuracy than previously available [21]. 
The crossover exponent q5 at the adsorption point satisfies, within error bars, the recent 
hyperuniversality conjecture @ = f 151. 
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